
NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

1US Atlas Software, PC,7/22/99 Control States...

Control States for Atlas Framework

Paolo Calafiura, LBL

Jim Kowalkowski, Charles Leggett, John Milford,
Marjorie Shapiro, Craig Tull, Laurent Vacavant

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

2US Atlas Software, PC,7/22/99 Control States...

Summary

➢ Control Framework: What is it?

➢ Lassi’s Object Networks

➢ What we want to add to them

➢ Design: System Features

➢ Design: The core classes

➢ Design Scenarios

➢ Status

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

3US Atlas Software, PC,7/22/99 Control States...

What Is It?

The control framework is the part of the infrastructure that
makes sure that
– The right piece of software

– Runs

– At the right time

– With the right inputs and

– The outputs go to the right place

 (Lassi’s definition)

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

4US Atlas Software, PC,7/22/99 Control States...

Lassi’s Object Networks

➢ Colors = data
types

➢ Modules =
behavior

➢ Whole network
= component

➢ Input-output
dependency

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

5US Atlas Software, PC,7/22/99 Control States...

Object Networks Features

✓ Design based on components
– Implementing well-defined interfaces

– Extensive use of notification

– Goal is to maximize re-usability

✓ Data flow based, pushing data down to trigger execution
– Indeed like a trigger system

– Kind of natural way to design a reconstruction program

➢ Is this the way we think when we analyze the data?
– No! We pull data at random (well…) from the modules that

reconstructed them, after they are done for that event (run, job,…)

➢ How easy will be to predict (and repeat!) the execution path
of a 1000 objects network?

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

6US Atlas Software, PC,7/22/99 Control States...

HitFinder

TrackFinder

T0Refiner

HistoHits

Hits

Tracks Vector<Hit*> myHits

Tracks

Hits

myHits[j] = newT0;

Also Hits has changed!!!

Hits
Hits

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

7US Atlas Software, PC,7/22/99 Control States...

What Is Missing?

➢ I don’t think we can reasonably interact with a self-
triggering network of say 1000 components without knowing
its global state.

➢ The framework as a State Machine:
– My HFILL must run after “event done”

– My new geometry constants must be loaded for “run 4567”

– I have to broadcast a “pack-up and go” message to 1000 modules
when the muon decoding module produces a “fatal error”

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

8US Atlas Software, PC,7/22/99 Control States...

Solution: Add Control States to the Network

➢ Synchronize network execution, notifying modules about the
next state transitions they may be interested into

➢ Control (or, even better, to suggest) the order in which the
components undergo a state transition (=run)

➢ Define the states, the order of modules and the state sources,
dynamically via the UI

➢ There should be no linker dependencies among components
and framework

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

9US Atlas Software, PC,7/22/99 Control States...

The Control States Network

NewJob NewEvt OnErr

•Sources

•States

•Components

•State Methods

HitFinder Tracker

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

10US Atlas Software, PC,7/22/99 Control States...

Setting up - a sample script

➢ associate States and StateSources
 StateSource rawFile(inputFile)
 next_event.attach(rawFile)

➢ define Sequences of components to be executed
 sequence all =
 { "hitFinder", "tracker", "myanal" }
 sequence reco = { "tracker", "myanal"}

➢ define State transitions, with usual flow-control constructs
 next_run.run("all")
 while (next_event.run("all")) {
 fill_histos.run("reco")
 fill_Bhistos.run("paolo")
 }

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

11US Atlas Software, PC,7/22/99 Control States...

The Component Interface Dictionary

➢ describe to the framework (via code generation)
– the States

 interface next_event : State {};

– each component interface
 interface hitFinder {
 void init();
 Result nextEvent(in WireCollection wires,
 out HitsCollection hits);
 }

– the association between States and component methods
ADD_STATE_METHOD(next_event,
 hitFinder::nextEvent)

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

12US Atlas Software, PC,7/22/99 Control States...

Running

➢ The framework runs States following the script order.

➢ Control returns to the framework after each state completes

➢ The State tries to run each registered component in order

➢ The Component determines what is the status of its
associated method (e.g Ready, notReady, alreadyRun), run it
if ready, and report to the State.

➢ The Object Network (or a Data Manager) notifies
Components when their Parameters are ready or change.

➢ The State may re-queue a Component which is NotReady.

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

13US Atlas Software, PC,7/22/99 Control States...

The Core Classes
➢ State Source

– drive the framework generating actions

➢ State (and Concrete States)
– observe sources for matching actions, run component methods

➢ Component Managers
– observe states, add matching methods to their queue

– generated from dictionary

➢ Component Methods
– implement the software-bus concept

– function objects wrapping real component method

– determine their status

– marshal parameters (database, F77)

– generated from dictionary

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

14US Atlas Software, PC,7/22/99 Control States...

The Software Bus

UI EVDIS

Trk Simul

Software Bus

Server
Interfaces

Client

Interfaces

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

15US Atlas Software, PC,7/22/99 Control States...

A Toy Implementation
 class HitFinder__newEvent : public virtual IRunnable {

 //IRunnable implementation
 inline IRunnable* clone() const { return new __newEvent(*this);}
 Result run(const IScheduler& s) {
 Result rc;
 Handle < TrackSet > set1;
 Handle < TrackSet > set2;
 Container < ParticleSet > set3;
 Key < TrackSet > key1("COT");
 Key < TrackSet > key2("SVX");
 Key < ParticleSet > key3("chargedCandidates");
 //unlikely to be done exactly like that but...
 event->get(key1, set1);
 event->get(key2, set2);
 rc = _comp->newEvent(set1, set2, set3);
 if (rc == Result::success)
 event->put(key3, set3);
 }
 };

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

16US Atlas Software, PC,7/22/99 Control States...

Scenario: Running a State

➢ The source notifies all registered states that he has a newEvent action
StateSource::notify DEBUG: notifying newEvent

➢ newEvent state catches the action and notifies its observers, the managers
State::update DEBUG: newEvent[instanceof NewEventState] got
message newEvent

➢ Each manager add the matching method to the state queue

➢ Now newEvent runs the scheduled methods
State::run DEBUG: newEvent[instanceof NewEventState] starts
Hitfinder::newEvent DEBUG: running
State::run WARNING: newEvent[instanceofHitFinder::__newEvent]
was not ready and had to be rescheduled
Histogrammer::newEvent DEBUG: running
Hitfinder::newEvent DEBUG: running

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

17US Atlas Software, PC,7/22/99 Control States...

Scenario: Running a State

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

18US Atlas Software, PC,7/22/99 Control States...

Scenario: Setting Up

➢ First we define the state classes
DEFINE_CTRL_STATE(NewJobStateS)
DEFINE_CTRL_STATE(NewRunState)
DEFINE_CTRL_STATE(NewEventState)

➢ Then we create the component managers
HitFinderMgr hitFinder;
HistogrammerMgr myHistos;

➢ We create the states instances and we register the component with them.
NewJobState newJob("newJob");
newJob.addIObserver(&myHistos);
newJob.addIObserver(&hitFinder);

➢ Finally we create the state source and register the states with it.
StateSource testSource("testSource");
testSource.addIObserver(&newJob);
testSource.addIObserver(&newRun);
testSource.addIObserver(&newEvent);

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

19US Atlas Software, PC,7/22/99 Control States...

NATIONAL ENERGY RESEARCH

SCIENTIFIC COMPUTING CENTER

20US Atlas Software, PC,7/22/99 Control States...

Where do we stand?

➢ We have a web page
http://iago.lbl.gov/paolo/ATLAS/framework/actiondesign.html

➢ We have a prototype (can get it from the same URL)
– Core classes running

– Interface dictionary starting

– Scripting in progress (IDL to Swig, John M.)

➢ We can use the prototype as a test bed for the requirements and
use-cases exercises in progress

